

5G Communication Standards and Their Role in Enabling Ultra- Reliable Low- Latency Healthcare Applications

Ravi Mohan , Mohsin Salim Gangat
Shri Ram Institute of Technology, A.Y.
Dadabhai Technical Institute

5. 5G Communication Standards and Their Role in Enabling Ultra-Reliable Low-Latency Healthcare Applications

¹Ravi Mohan, Associate Professor & HOD, Department of ECE, Shri Ram Institute of Technology, Jabalpur, Madhya Pradesh, India, 482002, ravimohansairam@gmail.com

²Mohsin Salim Gangat, Lecturer, Department of Computer Engineering, A.Y. Dadabhai Technical Institute, Kosamba, Gujarat, India, mohsingangat@gmail.com

Abstract

The advent of 5G communication standards has ushered in a new era of connectivity, significantly impacting various industries and applications, particularly in the realm of healthcare. This book chapter explores the critical role of 5G in enabling ultra-reliable low-latency communication (URLLC) for healthcare applications, with a focus on enhancing patient care, remote monitoring, and real-time diagnostics. With its unparalleled data rates, low latency, and massive connectivity capabilities, 5G addresses the pressing demands of modern healthcare systems that require reliable and timely data transmission. The chapter delves into the evolution of communication standards from 4G to 5G, highlighting the key technical features and architectural advancements that make 5G a transformative technology for healthcare. The integration of advanced technologies such as Software-Defined Networking (SDN), Network Functions Virtualization (NFV), and network slicing was also discussed in detail, illustrating how to optimize the efficiency and flexibility of 5G networks in supporting diverse healthcare applications. The chapter additionally examines the challenges and solutions associated with achieving URLLC performance, as well as the impact of enhanced mobile broadband (eMBB) on streaming services, virtual reality (VR), and augmented reality (AR) in healthcare settings. By providing a comprehensive overview of the 5G ecosystem, its capabilities, and its potential applications, this chapter offers valuable insights into how 5G revolutionize healthcare delivery, paving the way for smarter, more efficient, and patient-centric healthcare systems.

Keywords: 5G Communication, Ultra-Reliable Low-Latency Communication (URLLC), Healthcare Applications, Network Slicing, eMBB, Software-Defined Networking (SDN).

Introduction

The advent of 5G communication technology represents a groundbreaking shift in the landscape of global communication systems [1]. With its promise of ultra-high-speed connectivity, ultra-reliable low-latency communication (URLLC), and massive connectivity capabilities, 5G stands poised to address the limitations inherent in previous network generations [2]. This new standard was especially vital for healthcare, where precision, immediacy, and reliability are critical [3]. Healthcare applications, ranging from remote patient monitoring to real-time diagnostic systems, require networks that can support high volumes of data while ensuring minimal delays [4]. The

capacity of 5G to deliver such performance was expected to revolutionize healthcare systems by enabling innovations like telemedicine, robotic surgeries, and intelligent health monitoring [5].

One of the key advantages of 5G was its ability to support ultra-reliable low-latency communication (URLLC), which was crucial for real-time healthcare services [6]. In telemedicine, for example, the ability to transmit patient data with minimal delay was critical for the timely diagnosis and treatment of patients, particularly in emergency situations [7]. URLLC ensures that data transmission between healthcare providers and patients was almost instantaneous, facilitating remote consultations, virtual checkups, and quick response times. Additionally, the high reliability of 5G networks ensures that critical healthcare applications remain operational even during periods of high network congestion, a feature that was indispensable in life-or-death scenarios [8].

In parallel with URLLC, enhanced mobile broadband (eMBB) plays an important role in improving healthcare delivery [9]. eMBB provides the necessary bandwidth to support high-definition video consultations, virtual reality (VR) therapies, and augmented reality (AR) applications in healthcare [10]. The high throughput of 5G enables healthcare professionals to access and share large datasets, including medical imaging and patient records, seamlessly [11]. The integration of VR and AR into healthcare allows for enhanced training for medical professionals, more accurate patient diagnosis, and advanced surgical procedures, all of which demand robust data transfer capabilities [12]. As 5G networks mature, the role of eMBB in healthcare continue to expand, leading to more immersive and data-intensive applications [13].

While the promise of 5G in healthcare was immense, the successful deployment of 5G networks faces several challenges [14]. One significant hurdle was the need for specialized infrastructure to accommodate the high demands of healthcare applications [15]. For instance, the implementation of small cells and dense network architectures was required to ensure coverage in both urban and rural healthcare settings [16]. healthcare data privacy and security concerns must be addressed to ensure that sensitive patient information transmitted over 5G networks remains secure [17]. The establishment of secure, encrypted communication channels and the development of robust cybersecurity protocols are essential to mitigate risks associated with data breaches or network vulnerabilities [18].

The evolution of communication technologies from 4G to 5G has introduced new possibilities and applications in healthcare [19]. The transition from 4G LTE to 5G allows for the integration of next-generation technologies such as software-defined networking (SDN) and network functions virtualization (NFV) [20]. These technologies provide the flexibility to create network slices tailored to specific healthcare needs, enabling efficient management of resources and ensuring that healthcare applications receive the necessary bandwidth and latency requirements [21]. The introduction of network slicing enables dedicated network resources for healthcare, enhancing the overall performance and reliability of critical healthcare systems [22-23]. As 5G continues to evolve, itplay an increasingly central role in shaping the future of healthcare, driving innovations thatimprove patient outcomes and transform the way healthcare services are delivered worldwide [24-25].

